Mathematische Taschenrechner

QR-Zerlegungsrechner

Finden Sie die Orthonormalmatrix und die obere Dreiecksmatrix ganz einfach mit unserem kostenlosen Online-QR-Zerlegungsrechner heraus!

QR-Zerlegungsrechner

Inhaltsverzeichnis

Was ist eine QR-Zerlegung?
Wie berechnet man die QR-Zerlegung?
Was ist das Gram-Schmidt-Verfahren?
Existiert die QR-Zerlegung immer?
Wo wird die QR-Faktorisierung verwendet?
Verweise
In der linearen Algebra erleichtert die Faktorisierung einer komplexen Matrix die Analyse. Die QR-Zerlegung ist eine Matrixzerlegung, die häufig verwendet wird, um lineare Systeme zu lösen, Eigenwerte zu erhalten und Berechnungen in Bezug auf Determinanten. Die QR-Zerlegung wird auch im maschinellen Lernen und in seinen Anwendungen verwendet.
Unser QR-Zerlegungsrechner berechnet die obere Dreiecksmatrix und die orthogonale Matrix aus der gegebenen Matrix.
So verwenden Sie unseren Rechner:
1. Fügen Sie Ihre Matrixgröße hinzu (Spalten <= Zeilen)
2. Matrixpunkte einfügen
3. Wählen Sie die Rundungsgenauigkeit
4. Ergebnisse ansehen
Auf dieser Seite erfahren Sie auch, wie Sie die QR-Zerlegung mit dem Gram-Schmidt-Verfahren berechnen und wo die QR-Zusammensetzung im wirklichen Leben verwendet wird.

Was ist eine QR-Zerlegung?

Die QR-Zerlegung ist eine Technik, die verwendet wird, um eine Matrix in die Form A = QR umzuwandeln, wobei R gleich der oberen Dreiecksmatrix ist, Q gleich der orthogonalen Matrix ist und Q^(T)Q=I gilt, wobei Q^(T) die Qs' transponieren, und I ist die Identität der Matrix.
Die QR-Zerlegung ist auch als QR-Faktorisierung und QU-Faktorisierung bekannt und wird häufig bei der Lösung linearer Gleichungssysteme verwendet.
Mathematische Definition der QR-Zerlegung

Wie berechnet man die QR-Zerlegung?

Eine QR-Zerlegung kann durch verschiedene Methoden durchgeführt werden. Dazu gehören der Gram-Schmidt-Prozess, die Householder-Transformationen und die Givens-Rotationen.
Wir werden den Gram-Schmidt-Prozess durchgehen, und hier ist eine Schritt-für-Schritt-Anleitung zur Berechnung der QR-Zerlegung damit:
A = QR,
A = Gegebene Matrix
Q = Orthogonale Matrix
R = Obere Dreiecksmatrix
1. Definiere Matrix A
2. Nehmen Sie Spalten von A und verarbeiten Sie sie durch den Gram-Schmidt-Prozess. Als Ergebnis erhalten Sie orthonormale Vektoren: e1, e2, ..., en.
3. Bilden Sie mit diesen Vektoren eine Matrix Q, indem Sie Vektoren als Spalten verwenden.
4. Bilde Matrix R durch Linksmultiplikation von A mit der Transponierten von Q (R = QᵀA)
Los geht's! Sie haben erfolgreich die QR-Zerlegung berechnet und sowohl die orthogonale Matrix als auch die obere Dreiecksmatrix begründet!
QR-Zerlegung mit Gram-Schmidt-Methode

Was ist das Gram-Schmidt-Verfahren?

Der Gram-Schmidt-Prozess ist eine Folge von Operationen, die entworfen ist, um einen Satz linear unabhängiger Vektoren in einen äquivalenten Satz orthonormaler Vektoren zu transformieren.
Der Gram-Schmidt-Prozess wird häufig verwendet, da er die Berechnungen in einer Orthonormalbasis verarbeitet, die oft eine viel einfachere Basis für Berechnungen ist.
Gram-Schmidt-Methode

Existiert die QR-Zerlegung immer?

Die Faktorisierung A = QR-Zerlegung einer Matrix A ist eine nützliche Technik zum Schätzen von Eigenwerten. Es existiert immer, wenn der Rang von A gleich der Anzahl der Spalten von A ist.

Wo wird die QR-Faktorisierung verwendet?

Das Konzept der QR-Faktorisierung ist ein sehr nützliches Framework für verschiedene statistische und Datenanalyseanwendungen. Eine davon ist die Lösung der kleinsten Quadrate.
Die QR-Faktorisierung ist auch eine häufig verwendete Komponente im maschinellen Lernen und seinen Anwendungen. Es kann beispielsweise verwendet werden, um ein Objekt automatisch aus einem Bild zu entfernen. Ein weiteres Beispiel ist das Extrahieren eines Bildes aus einem Videoclip.
QR-Faktorisierung in der Datenwissenschaft

Verweise

Gander, W., 1980. Algorithmen für die QR-Zerlegung. Res. Rep, 80(02), S.1251-1268.
Goodall, CR, 1993. 13 Berechnung unter Verwendung der QR-Zerlegung.

Angelica Miller
Autor des Artikels
Angelica Miller
Angelica ist Psychologiestudentin und Content-Autorin. Sie liebt die Natur und liebt Dokumentationen und lehrreiche YouTube-Videos.

QR-Zerlegungsrechner Deutsch
Veröffentlicht: Thu Oct 07 2021
In Kategorie Mathematische Taschenrechner
QR-Zerlegungsrechner zu Ihrer eigenen Website hinzufügen

Andere mathematische Taschenrechner

Vektor Kreuzprodukt Rechner

30 60 90 Dreiecksrechner

Erwartungswertrechner

Wissenschaftlicher Online-Rechner

Standardabweichungsrechner

Prozentrechner

Rechner Für Gewöhnliche Brüche

Umrechner Von Pfund In Tassen: Mehl, Zucker, Milch..

Kreisumfangsrechner

Doppelwinkel-Formelrechner

Mathematischer Wurzelrechner

Dreieckflächenrechner

Coterminal Winkelrechner

Punktproduktrechner

Mittelpunktrechner

Konverter Signifikanter Zahlen (Sig-Figs-Rechner)

Bogenlängenrechner Für Kreis

Punktschätzungsrechner

Prozentualer Erhöhungsrechner

Prozent-Differenz-Rechner

Linearer Interpolationsrechner

Matrixtransponierungsrechner

Dreieck Hypotenuse Rechner

Trigonometrie-Rechner

Seiten- Und Winkelrechner Für Rechtwinkliges Dreieck (Dreiecksrechner)

45 45 90 Dreiecksrechner

Matrix-Multiplikationsrechner

Durchschnittsrechner

Zufallszahlengenerator

Fehlerspanne Rechner

Winkel Zwischen Zwei Vektoren Rechner

LCM-Rechner - Rechner Für Das Kleinste Gemeinsame Vielfache

Quadratmeter Rechner

Exponentenrechner

Mathe-Restrechner

Regel-of-Three-Rechner - Direkter Anteil

Quadratischer Formelrechner

Summenrechner

Umkreisrechner

Z-Wert-Rechner

Fibonacci-Rechner

Rechner Für Kapselvolumen

Pyramidenvolumenrechner

Volumenrechner Für Dreieckige Prismen

Rechner Für Rechteckiges Volumen

Kegelvolumenrechner

Würfel Volumen Rechner

Zylindervolumen Rechner

Skalenfaktor Dilatationsrechner

Shannon-Diversity-Index-Rechner

Bayes-Theorem-Rechner

Antilogarithmus-Rechner

Eˣ Rechner

Primzahlrechner

Rechner Für Exponentielles Wachstum

Stichprobenrechner

Inverser Logarithmus (log) Rechner

Poisson-Verteilungsrechner

Multiplikativer Inverser Rechner

Markiert Prozentrechner

Verhältnisrechner

Empirischer Regelrechner

P-Wert-Rechner

Berechnung Des Kugelvolumens

NPV-Rechner